4.6 Article

Hepatocyte growth factor and c-Met promote dendritic maturation during hippocampal neuron differentiation via the Akt pathway

期刊

CELLULAR SIGNALLING
卷 20, 期 5, 页码 825-835

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2007.12.013

关键词

HGF; PHA-665752; shRNA; MAP2; GSK-beta; neurite

资金

  1. NIMH NIH HHS [MH069778, R01 MH069778-04, R01 MH069778] Funding Source: Medline

向作者/读者索取更多资源

During central nervous system development, growth factors and their associated receptor protein tyrosine kinases regulate many neuronal functions such as neurite extension and dendrite maturation. Hepatocyte growth factor (HGF) and its receptor, c-Met, can promote formation of neurites and enhance elaboration of dendrites in mature neurons, but their effects on the early stages of dendrite maturation in hippocampal neurons and the signaling pathways by which they promote dendrite formation have not been studied. Exogenous HGF treatment effectively enhanced the phosphorylation and activation of c-Met in cultured hippocampal neurons at 4 days in vitro. HGF treatment increased the number of dendrites and promoted dendrite elongation in these neurons. Consistent with these results, HGF activated Akt, which phosphorylates glycogen synthase kinase-3 beta (GSK-3 beta) to inactivate it, and reduced phosphorylation of microtubule-associated protein 2 (MAP2), which can promote microtubule polymerization and dendrite elongation when dephosphorylated. Conversely, pharmacological inhibition of c-Met with its specific inhibitor, PHA-665752, or genetic knock-down of c-Met with short hairpin RNAs (shRNAs) suppressed HGF-induced phosphorylation of Akt and GSK-3 beta, increased phosphorylation of MAP2, and reduced dendrite number and length in cultured hippocampal neurons. Moreover, suppressing c-Met with PHA-665752 or by shRNA decreased MAP2 expression. Inhibiting Akt activity with the phosphomositide-3-kinase inhibitor LY294002 or Akt inhibitor X suppressed HGF-induced phosphorylation of GSK-3 beta, increased MAP2 phosphorylation, and blocked the ability of HGF to enhance dendritic length. These observations indicate that HGF and c-Met can regulate the early stages of dendrite maturation via activation of the Akt/GSK-3 beta pathway. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据