4.6 Review

Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of beta-catenin

期刊

CELLULAR SIGNALLING
卷 20, 期 10, 页码 1697-1704

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2008.04.014

关键词

Wnt; cat/TCF; insulin; IGF-1; FOXO; mTOR

资金

  1. Canadian Institutes of Health Research (CIHR) [68991, 38009]
  2. Banting and Best Diabetes Centre

向作者/读者索取更多资源

The bipartite transcription factor beta-catenin/TCF (cat/TCF) has been recognized as the major effector of the Wnt signaling pathway for more than a decade, and its over-activation has been associated with malignancy such as colon and breast cancer. Extensive examination in different cell lineages has shown that the activity of cat/TCF can be stimulated by mechanisms other than via the Wnt glycoproteins, including the stimulation of beta-cat nuclear translocation and enhanced binding of cat/TCF to the Wnt target gene promoters by insulin and insulin-like growth factor-1 (IGF-1). In addition, the heterotrimeric G proteins of the G(12) subfamily can interact with the cytoplasmic domain of cadherins, resulting in the release of the transcriptional activator beta-cat. Furthermore, certain peptide hormones may stimulate cat/TCF-mediated gene transcription via activation of their corresponding G-protein coupled receptors. Recently, the serine/threonine kinase GSK-3 has been recognized to coordinate with AMP activated protein kinase (AMPK) in phosphorylation and activation of TSC2, the major component of the tumor suppressor complex TSC1/2. Thus, Wnt activation can stimulate protein translation via GSK-3 and TSC1/2 inactivation, followed by mTOR activation. Finally, beta-cat also functions as a pivotal molecule in defense against oxidative stress via serving as a partner of forkhead box O (FOXO) transcription factors. Thus, FOXO proteins, which mainly mediate aging and stress signaling, and TCF factors, which mainly mediate developmental and proliferation signaling, compete for a limited pool of free beta-cat. Insulin and growth factors, on the other hand, control the balance between TCF- and FOXO-mediated gene transcription via phosphorylation and nuclear exclusion of FOXO proteins. These observations provide new insight to understand how Wnt, insulin/growth factors, and FOXOs are involved in versatile physiological events and the development and progression of various human diseases. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据