4.7 Article

A numerical investigation of unsteady bubbly cavitating nozzle flows

期刊

PHYSICS OF FLUIDS
卷 14, 期 1, 页码 300-311

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1416497

关键词

-

向作者/读者索取更多资源

The effects of unsteady bubble dynamics on cavitating flow through a converging-diverging nozzle are investigated numerically. A continuum model that couples the Rayleigh-Plesset equation with the continuity and momentum equations is used to formulate unsteady, quasi-one-dimensional partial differential equations. Flow regimes studied include those where steady-state solutions exist, and those where steady-state solutions diverge at the so-called flashing instability. These latter flows consist of unsteady bubbly shock waves traveling downstream in the diverging section of the nozzle. An approximate analytical expression is developed to predict the critical backpressure for choked flow. The results agree with previous barotropic models for those flows where bubble dynamics are not important, but show that in many instances the neglect of bubble dynamics cannot be justified. Finally the computations show reasonable agreement with an experiment that measures the spatial variation of pressure, velocity and void fraction for steady shockfree flows, and good agreement with an experiment that measures the throat pressure and shock position for flows with bubbly shocks. In the model, damping of the bubble radial motion is restricted to a simple effective viscosity, but many features of the flow are shown to be independent of the specific damping mechanism. (C) 2002 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据