4.3 Review

Pd asymmetric allylic alkylation (AAA). A powerful synthetic tool

期刊

CHEMICAL & PHARMACEUTICAL BULLETIN
卷 50, 期 1, 页码 1-14

出版社

PHARMACEUTICAL SOC JAPAN
DOI: 10.1248/cpb.50.1

关键词

palladium catalysis; asymmetric synthesis; allylic alkylation; total synthesis; chiral ligand; dynamic kinetic asymmetric transformation

向作者/读者索取更多资源

Palladium catalyzed asymmetric allylic alkylations represent a challenging problem because the mechanism of the reaction places the chiral environment distal to the bond breaking or making events responsible for the asymmetric induction. Furthermore, unlike virtually every other asymmetric process, many strategies can be employed for introduction of asymmetry and many different types of bonds can be formed. While over 100 different ligands have been designed, a family of ligands derived from 2-diphenylphosphinobenzoic or 1-naphthoic acid and chiral scalemic diamines have been successful in inducing excellent enantioselectivity by five different enantiodiscriminating events. These methods have already provided practical strategies towards numerous biological targets-some of which are adenosine and its enantiomer, aflatoxin B, aristeromycin, calanolide A and B, carbovir, cyclophellitol, ethambutol, galanthamine, mannostatin, neplanocin, phyllanthocin, sphingofungins E and F, tetraponaines, vigabatrin, and valienamine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据