4.2 Article

Sustained Release of IGF-1 by 3D Mesoporous Scaffolds Promoting Cardiac Stem Cell Migration and Proliferation

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 49, 期 6, 页码 2358-2370

出版社

KARGER
DOI: 10.1159/000493836

关键词

Drug release; IGF-1; 3D mesoporous scaffolds; Cardiac stem cells

资金

  1. National Natural Science Foundation of China [81400219, 81400225, 81500204]
  2. Natural Science Foundation of Jiangsu Province [BK20150648]
  3. [QNRC2016815]

向作者/读者索取更多资源

Background/Aims: C-kit-positive cardiac stem cells (CSCs) may have potential as a treatment for cardiovascular disease. However, the low survival rates of c-kit-positive CSCs present a major challenge during the transplantation process. Methods: The hierarchical structure of the 3D cell scaffold was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and N-2 adsorption-desorption isotherms. Analyses of the proliferation and migration performances of the IGF-1 scaffold on c-kit-positive CSCs were conducted by experiments including QuantiT PicoGreen dsDNA and transwell assays. Results: In this study, we synthesized for the first time a novel hierarchical macro-mesoporous silica material (denoted MS15-c) in a one-pot procedure for the release of insulin-like growth factor-1 (IGF-1) and a three-dimensional (3D) cell scaffold. Both macropores and mesopores were visible in MS15-c and enabled the sustained release of IGF-1, extending its half-life and enhancing CSC proliferation and migration. Proliferation and migration were detected by QuantiT PicoGreen dsDNA and transwell assays, respectively. Moreover, an in vivo experiment was conducted to detect heart function with the addition of MS15-c. The new strategy proposed in this paper may extend the bio-applications of 3D cell scaffolds, thus permitting the sustained release of growth factors and efficient promotion of cell proliferation. Conclusion: This work successfully demonstrated an effective strategy for the construction of MS15-c cell scaffolds with hierarchical macro-mesoporous structures. The macro-mesoporous structures gave cell scaffolds the ability to release a growth factor to facilitate cell growth, while the scaffold structure promoted cell proliferation. (C) 2018 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据