4.2 Article

Exosomal miR-27a Derived from Gastric Cancer Cells Regulates the Transformation of Fibroblasts into Cancer-Associated Fibroblasts

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 49, 期 3, 页码 869-883

出版社

KARGER
DOI: 10.1159/000493218

关键词

miR-27a; Cancer associated fibroblasts; Exosome; Gastric cancer; CSRP2; Tumor microenvironment

资金

  1. National Nature Science Foundation of China [81572321, 81501988]
  2. Nature Science Foundation of Tianjin City [15jcybjc28200]

向作者/读者索取更多资源

Background/Aims: The malignant biological behavior of gastric cancer(GC) is not only determined by cancer cells alone, but also closely regulated by the microenvironment. Fibroblasts represent a large proportion of the components in the tumor microenvironment, and they promote the development of disease. Currently, accumulating evidence suggests that exosomes can function as intercellular transport systems to relay their contents, especially microRNAs(miRNAs). Methods: First, we detected the highly-expressed level of miR-27a in exosomes isolated from gastric cancer cells by qRT-PCR. MiR-27a -over-expressed models in vitro and in vivo were established to investigate the transformation of cancer-associated fibroblasts observed by Western blotting, and the malignant behavior of gastric cancer cells using the methods CCK8 and Transwell. Moreover, the downregulation of CSRP2 in fibroblasts was used to evaluate the promotion of malignancy of gastric cancer using the methods CCK8 and Transwell. Results: In this study, we found a marked high level of miR-27a in exosomes derived from GC cells. miR-27a was found to function an oncogene that not only induced the reprogramming of fibroblasts into cancer-associated fibroblasts(CAFs), but also promoted the proliferation, motility and metastasis of cancer cells in vitro and in vivo. Conversely, CAFs with over-expression of miR-27a could pleiotropically increase the malignant behavior of the GC cells. For the first time, we revealed that CSRP2 is a downstream target of miR-27a. CSRP2 downregulation could increase the proliferation and motility of GC cells. Conclusion: Thus, this report indicates that miR-27a in exosomes derived from GC cells has a crucial impact on the microenvironment and may be used as a potential therapeutic target in the treatment of GC. (C) 2018 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据