4.2 Article

Hypoxia-Regulated miR-146a Targets Cell Adhesion Molecule 2 to Promote Proliferation, Migration, and Invasion of Clear Cell Renal Cell Carcinoma

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 49, 期 3, 页码 920-931

出版社

KARGER
DOI: 10.1159/000493224

关键词

miRNA; miR-146a; CADM2; Hypoxia; Clear cell renal cell carcinoma

资金

  1. Scientific Research Foundation of Tianjin Education Commission [2017KJ225]

向作者/读者索取更多资源

Background/Aims: miR-146a has recently been shown to promote cell proliferation, migration, and invasion in many cancers, but the role of miR-146a in clear cell renal cell carcinoma (ccRCC) remains unclear. Methods: Reverse transcription quantitative PCR (RT-qPCR) was performed to investigate the mRNA expression of miR-146a and CADM2 in ccRCC tissues. The luciferase reporter assay, Western blotting, and ChIP assay were carried out to explore the promoter and the transcription factor of miR-146a. Moreover, the effect of miR-146a and CADM2 on ccRCC cells was explored using methyl thiazolyl tetrazolium, colony formation, and migration and invasion assays. The luciferase reporter assay, RT-qPCR, western blotting, and immunofluorescence assay were carried out to investigate whether CADM2 is directly regulated by miR-146a. A tumor xenograft model and immunohistochemical staining were used to examine the carcinogenic effect of miR-146a and CADM2 in vivo. Results: miR-146a has been shown to promote cell proliferation, migration, and invasion. Here, we found that miR-146a is highly expressed in ccRCC tissues, whereas CADM2 is down-regulated. Hypoxia can induce the expression of miR-146a by stimulating its promoter. In addition, we demonstrated that miR-146a promoted and CADM2 inhibited proliferation, migration, and invasion of ccRCC cells. The 3' untranslated region (UTR) luciferase reporter assay identified that miR-146a targeted the 3' UTR of CADM2 and negatively regulated its expression. Ectopic expression of CADM2 counteracted the promoting effect of miR-146a on cell proliferation, migration, invasion, and the epithelial-mesenchymal transition process. Conclusion: Together, the finding of down-regulation of CADM2 by miR-146a can provide new insights into ccRCC pathogenesis and might contribute to the development of novel therapeutic strategies. (C) 2018 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据