4.8 Article

Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation

期刊

PLANT CELL
卷 14, 期 3, 页码 673-688

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.010420

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM042143, R37 GM042143] Funding Source: Medline

向作者/读者索取更多资源

Crd1 (Copper response defect 1), which is required for the maintenance of photosystem I and its associated light-harvesting complexes in copper-deficient (-Cu) and oxygen-deficient (-O-2) Chlamydomonas reinhardtii cells, is localized to the thylakoid membrane. A related protein, Cth1 (Copper target homolog 1), is shown to have a similar but not identical function by genetic suppressor analysis of gain-of-function sct1 (suppressor of copper target 1) strains that are transposon-containing alleles at CTH1. The pattern of Crd1 versus Cth1 accumulation is reciprocal; Crd1 abundance is increased in -Cu or -O-2 Cells, whereas Cth1 accumulates in copper-sufficient (+Cu), oxygenated cells. This expression pattern is determined by a single trans-acting regulatory focus, CRR1 (COPPER RESPONSE REGULATOR 1), which activates transcription in -Cu cells. In + Cu cells, a 2.1-kb Cth1 mRNA is produced and translated, whereas Crd1 is transcribed only at basal levels, leading to Cth1 accumulation in +Cu cells. In -Cu cells, CRR1 function determines the activation of Crd1 expression and the production of an alternative 3.1-kb Cth1 mRNA that is extended at the 5' end relative to the 2.1-kb mRNA. Synthesis of the 3.1-kb mRNA, which encodes six small upstream open reading frames that possibly result in poor translation, blocks the downstream promoter through transcriptional occlusion. Fluorescence analysis of wild-type, crd1, and sct1 strains indicates that copper-responsive adjustment of the Cth1:Crd1 ratio results in modification of the interactions between photosystem I and associated light-harvesting complexes. The tightly coordinated CRR1-dependent regulation of isoenzymes Cth1 and Crd1 reinforces the notion that copper plays a specific role in the maintenance of chlorophyll proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据