4.7 Article

SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint

期刊

GENES & DEVELOPMENT
卷 16, 期 5, 页码 571-582

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.970702

关键词

DNA damage response; S-phase checkpoints; phosphorylation; SMC1; ATM; NBS1

资金

  1. NATIONAL CANCER INSTITUTE [R01CA084199] Funding Source: NIH RePORTER
  2. NCI NIH HHS [R01 CA084199, CA84199] Funding Source: Medline

向作者/读者索取更多资源

Structural maintenance of chromosomes (SMC) proteins (SMC1, SMC3) are evolutionarily conserved chromosomal proteins that are components of the cohesin complex, necessary for sister chromatid cohesion. These proteins may also function in DNA repair. Here we report that SMC1 is a component of the DNA damage response network that functions as an effector in the ATM/NBS1-dependent S-phase checkpoint pathway. SMC1 associates with BRCA1 and is phosphorylated in response to IR in an ATM- and NBS1-dependent manner. Using mass spectrometry, we established that ATM phosphorylates S957 and S966 of SMC1 in vivo. Phosphorylation of S957 and/or S966 of SMC1 is required for activation of the S-phase checkpoint in response to IR. We also discovered that the phosphorylation of NBS1 by ATM is required for the phosphorylation of SMC1, establishing the role of NBS1 as an adaptor in the ATM/NBS1/SMC1 pathway. The ATM/CHK2/CDC25A pathway is also involved in the S-phase checkpoint activation, but this pathway is intact in NBS cells. Our results indicate that the ATM/NBS1/SMC1 pathway is a separate branch of the S-phase checkpoint pathway, distinct from the ATM/CHK2/CDC25A branch. Therefore, this work establishes the ATM/NBS1/SMC1 branch, and provides a molecular basis for the S-phase checkpoint defect in NBS cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据