4.8 Article

Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice

期刊

NATURE GENETICS
卷 30, 期 1, 页码 81-85

出版社

NATURE AMERICA INC
DOI: 10.1038/ng794

关键词

-

资金

  1. NATIONAL EYE INSTITUTE [F32EY007015] Funding Source: NIH RePORTER
  2. NEI NIH HHS [F32 EY007015] Funding Source: Medline

向作者/读者索取更多资源

Pigmentary glaucoma is a significant cause of human blindness. Abnormally liberated iris pigment and cell debris enter the ocular drainage structures, leading to increased intraocular pressure (IOP) and glaucoma(1-3). DBA/2J (D2) mice develop a form of pigmentary glaucoma involving iris pigment dispersion (IPD) and iris stromal atrophy (ISA)(4,5). Using high-resolution mapping techniques, sequencing and functional genetic tests, we show that IPD and ISA result from mutations in related genes encoding melanosomal proteins. IPD is caused by a premature stop codon mutation in the Gpnmb (Gpnmb(R150X)) gene, as proved by the occurrence of IPD only in D2 mice that are homozygous with respect to Gpnmb(R150X). otherwise, similar D2 mice that are not homozygous for Gpnmb(R150X) do not develop IPD. ISA is caused by the recessive Tyrp1(b) mutant allele and rescued by the transgenic introduction of wildtype Tyrp1. We hypothesize that IPD and ISA alter melanosomes, allowing toxic intermediates of pigment production to leak from melanosomes, causing iris disease and subsequent pigmentary glaucoma. This is supported by the rescue of IPD and ISA in D2 eyes with substantially decreased pigment production. These data indicate that pigment production and mutant melanosomal protein genes may contribute to human pigmentary glaucoma. The fact that hypopigmentation profoundly alleviates the D2 disease indicates that therapeutic strategies designed to decrease pigment production may be beneficial in human pigmentary glaucoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据