4.2 Article

PIKfyve Sensitivity of hERG Channels

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 31, 期 6, 页码 785-794

出版社

KARGER
DOI: 10.1159/000350096

关键词

K+ channel; Cardiac repolarization; Tumor cells; PKB; AKT; PIKfyve; Electrophysiology

资金

  1. DFG [GRK 1302/1, SE 1077/3, SFB 773]
  2. Open Access Publishing Fund of Tuebingen University

向作者/读者索取更多资源

Background/Aims: Human ether-a-go-go (hERG) channels contribute to cardiac repolarization and participate in the regulation of tumor cell proliferation. Mutations in hERG channels may cause long QT syndrome and sudden cardiac death due to ventricular arrhythmias. HERG channel activity is up-regulated by the serum- and glucocorticoid-inducible kinase isoforms SGK1 and SGK3. Related kinases are protein kinase B (PKB/Akt) isoforms. SGK's and PKB/Akt's activate phosphatidylinositol-3-phosphate-5-kinase PIKfyve, which in turn up-regulates several carriers and channels. An effect of PIKfyve on hERG channels, has, however, never been shown. The present study thus explored the putative influence of PIKfyve on hERG channel expression and activity. Methods: hERG channels were expressed in Xenopus oocytes with or without PIKfyve and/or PKB, expression of endogenous and injected hERG quantified by RT-PCR, and hERG channel activity determined utilizing dual electrode voltage clamp. Moreover, hERG protein abundance in the cell membrane was visualized utilizing specific antibody binding and subsequent confocal microscopy and quantified by chemiluminescence. Results: Coexpression of wild type PIKfyve increased hERG channel activity in hERG-expressing Xenopus oocytes. hERG channel activity was further increased by coexpression of PKB, an effect augmented by additional coexpression of PIKfyve, but not by additional coexpression of PKB/Akt-resistant PIKfyve mutant PIKfyve(S318A). Coexpression of PIKfyve increased hERG channel protein abundance in the cell membrane. Inhibition of hERG channel insertion into the cell membrane by Brefeldin A (5 mu M) resulted in a decline of current, which was similar in Xenopus oocytes expressing hERG together with PIKfyve and in Xenopus oocytes expressing hERG alone. Conclusion: hERG is up-regulated by PIKfyve, which is in turn activated by PKB/Akt. Copyright (c) 2013 S. Karger AG, Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据