4.2 Article

Expression and Functional Significance of the Ca2+-Activated Cl- Channel ANO6 in Dendritic Cells

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 30, 期 5, 页码 1319-1332

出版社

KARGER
DOI: 10.1159/000343321

关键词

Ano6; ORCC; TMEM16F; Migration; CCR7

资金

  1. Deutsche Forschungsgemeinschaft [SFB699A7]

向作者/读者索取更多资源

Background/Aims: Migration of dendritic cells (DCs), antigen presenting cells that link innate and adaptive immunity, is critical for initiation of immune responses. DC migration is controlled by the activity of different ion channels, which mediate Ca2+ flux or set the membrane potential. Moreover, cell migration requires local volume changes at the leading and rear end of travelling cells, which might be mediated by the fluxes of osmotically active solutes, including Cl-. The present study explored the functional expression, regulation and role of Cl- channels in mouse bone marrow-derived DCs. Methods/Results: In whole-cell patch clamp experiments we detected outwardly rectifying Cl- currents which were activated by elevation of cytosolic Ca2+, triggered either by ionomycin in the presence of extracellular Ca2+ or mobilization of Ca2+ by IP3. Most importantly, Ca2+-activated Cl- channels (CaCCs) were activated by CCL21 (75 ng/ml), an agonist of the chemokine receptor CCR7. The currents showed sensitivity to Cl- channel blockers such as tannic acid (10 mu M), digallic acid (100 mu M) and more specific CaCC blockers niflumic acid (300 mu M) and AO1 (20 mu M). According to RT-PCR and Western blot data, Anoctamin 6 (ANO6) is expressed in DCs. Knock-down of ANO6 with siRNA led to inhibition of CaCC currents in DCs. Moreover, chemokine-induced migration of both immature and LPS-matured DCs was reduced upon ANO6 knock-down. Conclusion: Our data identify ANO6 as a Ca2+-activated Cl- channel in mouse DCs, show its activation upon chemokine receptor ligation and establish an important role of ANO6 in chemokine-induced DC migration. Copyright (C) 2012 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据