4.7 Article

Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 175, 期 1, 页码 200-224

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcph.2001.6935

关键词

-

向作者/读者索取更多资源

We propose a numerical method for modeling multimateriaI flows where the domain is decomposed into separate Eulerian and Lagrangian subdomains. That is, the equations are written in Eulerian form in one subdomain and in Lagrangian form in the other subdomain. This is of interest, for example, when considering the effect of underwater explosions on the hull of a ship or the impact of a low speed projectile on a soft explosive target. On the one hand, high-speed fluid flows are traditionally modeled by applying shock-capturing schemes to the compressible Euler equations to avoid problems associated with tangling of a Lagrangian mesh. On the other hand, solid dynamics calculations are traditionally carried out using Lagrangian numerical methods to avoid problems associated with numerical smearing in Eulerian calculations. We use the ghost fluid method to create accurate discretizations across the Eulerian/Lagrangian interface. The numerical method is presented in both one and two spatial dimensions; three-dimensional extensions (to the interface coupling method) are straightforward. (C) 2002 Elsevier Science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据