4.6 Article

Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge

期刊

JOURNAL OF APPLIED MICROBIOLOGY
卷 92, 期 5, 页码 837-843

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-2672.2002.01591.x

关键词

-

向作者/读者索取更多资源

Aims: This study attempts to establish a relationship between the Cr(VI) resistance of the culturable microbial community and the Cr(VI) resistance and Cr(VI)-reducing ability of representative strains of each population, in order to assess whether these are exclusive characteristics of one microbial group or abilities shared among many groups. Methods and Results: A group of 48 Cr(VI)-resistant isolates, with different colony types, was isolated from chromium-contaminated activated sludge. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis protein patterns and fatty acid methyl ester analysis identified six populations, representing 54% of the isolated bacteria, as belonging to the genera Acinetobacter and Ochrobactrum . The remaining populations included strains identified as species of the beta-Proteobacteria and high G + C Gram-positive bacteria. The Cr(VI) resistance and reduction ability of the strains were tested. All but two isolates grew in the presence of 1 mmol l(-1) Cr(VI). During enrichment, all isolates were able to survive to 2 mmol l(-1) Cr(VI) and complete Cr(VI) reduction was achieved. Representative strains of each population were able to partially reduce (5.4-39.1%) the Cr(VI) present in the growth medium. Conclusions: Most of the identified isolates have never been reported to be Cr(VI)-resistant and/or Cr(VI)-reducing strains. The mechanisms of Cr(VI) resistance and reduction may differ from group to group; therefore, it is evident that both Cr(VI) resistance and reduction are shared abilities and not an exclusive characteristic of a single group, possibly reflecting horizontal genetic transfer resulting from selective pressure in this contaminated environment. Significance and Impact of the Study: To our knowledge, this is the first study of a microbial community under chronic chromate stress and, as the success of microbial-based metal remediation technologies requires a better understanding of the microbial community and the population response to metal stress, it may contribute to the implementation of a strategy of bioremediation of chromate-contaminated environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据