4.2 Article

A Proteomic Approach to Determine Changes in Proteins Involved in the Myocardial Metabolism in Left Ventricles of Spontaneously Hypertensive Rats

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 25, 期 2-3, 页码 347-358

出版社

KARGER
DOI: 10.1159/000276567

关键词

Myocardial metabolism; Hypertension; Proteomics

资金

  1. Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III [RD06/0009]
  2. Fondo de Investigaciones Sanitarias (FIS) [PI06/0133]
  3. Plan Nacional de Investigacion y Desarrollo [SAF2007-61595]
  4. Brystol Myers Squibb

向作者/读者索取更多资源

Background: Different works have suggested that in the hypertrophied heart the energy metabolic pathway shifts to glycolysis. Our aim was to evaluate using proteomics the expression of proteins associated with different energetic metabolic pathways in hypertrophied left ventricles of spontaneously hypertensive rats (SHR). Methods: 24-weeks-old SHR with stable hypertension and established left ventricle hypertrophy were used. Normotensive Wistar Kyoto rats were used as control. Proteins from left ventricles were analyzed by 2-dimensional electrophoresis and identified by comparison with a virtual rat heart proteomic map and mass spectrometry. Results: Enoyl-CoA hydratase expression, an enzyme involved in fatty acid beta-oxidation, was reduced whereas the expression of other beta-oxidation enzymes, 3-ketoacyl-CoA thiolase and the mitochondrial precursor of acyl-CoA thioester hydrolase, was increased in the hypertrophied left ventricles. The expression of two enzymes involved in the first steps of glycolysis, fructose bisphosphate aldolase and triosephosphate isomerase, was reduced in the left ventricle of SHR. Pyruvate dehydrogenase expression, enzyme involved in glucose oxidation, was enhanced in the hypertrophied ventricles whereas proteins of the tricarboxylic acid cycle were not modified. Proteins involved in the mitochondrial oxidative phosphorylation were overexpressed whereas the alpha-subunit of the mitochondrial precursor of ATP synthase was downexpressed. Conclusions: Several proteins involved in the main energy metabolic pathways were up and downexpressed. Moreover, our results seem to suggest that probably neither fatty acid beta-oxidation nor glycolysis are the only sources for energy in the hypertrophied left ventricle. Copyright (C) 2010 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据