4.2 Article

Ionic Mechanisms Underlying Action Potential Prolongation by Focal Cerebral Ischemia in Rat Ventricular Myocytes

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 23, 期 4-6, 页码 305-316

出版社

KARGER
DOI: 10.1159/000218177

关键词

Cerebral ischemia; Arrhythmia; QT prolongation; Ion currents

资金

  1. National Basic Research Program of China Foundation (973 Program) [2007CB512000, 2007CB512006]
  2. Department of Education of Heilongjiang province of China Foundation [11521081]
  3. Specialized Research Fund for the Doctoral Program of Higher Education [20060226019]

向作者/读者索取更多资源

Despite prolongation of the QTc interval in humans during cerebral ischemia, little is known about the mechanisms that underlie these actions. Cerebral ischemic model was established by middle cerebral artery occlusion (MCAO) for 24 h. In rat ventricular myocytes, the effect of cerebral ischemia on action potential duration (APD) and underlying electrophysiologic mechanisms were investigated by whole-cell patch clamp. We demonstrated that heart rate-corrected QT interval and APD were prolonged with frequent occurrence of ventricular tachyarrhythmias in a rat model of MCAO. The I(Na) density was overall smaller in cerebral ischemic myocytes relative to sham myocytes (P < 0.01). The Nav1.5 protein and mRNA levels (pore-forming subunit for I(Na)) were decreased by about 20% (P < 0.01) in cerebral ischemic rat hearts than those in sham-operated rat hearts. Peak transient outward K(+) current (I(to)) at +60 mV was found decreased by similar to 32.3% (P < 0.01) in cerebral ischemic rats. The peak amplitude of L-type Ca(2+) current (I(Ca,L)) was increased and the inactivation kinetics were slowed (P < 0.01). Protein level of the pore-forming subunit for I(to) was decreased, but that for I(Ca,L) was increased. The inward rectifier K(+) current (I(K1)) at -120 mV and its protein level were unaffected. Our study represents the first documentation of I(Na), I(to) and I(Ca,L) channelopathy as the major ionic mechanism for cerebral ischemic QT prolongation. Copyright (C) 2009 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据