4.2 Article

Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver

期刊

JOURNAL OF BIOCHEMISTRY
卷 131, 期 1, 页码 131-135

出版社

JAPANESE BIOCHEMICAL SOC
DOI: 10.1093/oxfordjournals.jbchem.a003067

关键词

Apaf-1; brain; caspase 9; caspase 3; mitochondria pathway

向作者/读者索取更多资源

Brain and liver extracts of rats at different stages after birth were examined for cytochrome c/dATP-dependent caspase (DEVDase)-activation (mitochondria pathway) in vitro. The caspase-activating activity in the brain extracts rapidly decreased after birth, reaching approximately 50 and 5%, at I and 2 weeks, respectively, of that in a 3-days-newborn sample, and essentially no caspase-activation was detected in the adult rat brain extracts. Such a dramatic change was not detected in the liver samples, suggesting that the observed abrogation of the cytochrome c-dependent mitochondria pathway after birth is a brain-specific event. In order to determine the factor(s) lacking in adult brain, we separately measured Apaf-1, procaspase 9, and pro-DEVDase activities using a supplementation assay. In adult brain, Apaf-1 activity was scarcely detected, while the tissue retained low but significant amounts of procaspase 9 (16% of that in the fetal tissue) and a pro-DEVDase (3.4%). In contrast, adult liver extracts retained relatively high levels of all of these factors. Immunoblot analyses clearly indicated that the expression of Apaf-1 and procaspase 3 is markedly suppressed within 4 weeks after birth in brain tissue while they are even expressed in adult liver. Considering these results together, we propose that, in the brain, the cytochrome c-dependent mitochondria pathway, which is essential for the programmed cell death during normal morphogenesis, is abrogated within 2-4 weeks after birth, whereas the pathway is still active in other adult tissues such as liver.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据