4.2 Article

Influence of Amitriptyline on Eryptosis, Parasitemia and Survival of Plasmodium Berghei-Infected Mice

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 22, 期 5-6, 页码 405-412

出版社

KARGER
DOI: 10.1159/000185482

关键词

Malaria; Cell volume; Phosphatidylserine; Sphingomyelinase; Ceramide

资金

  1. Deutsche Forschungsgemeinschaft [La 315/6-1, La 315/13-1, Hu 781/4-3]

向作者/读者索取更多资源

Plasmodia express a sphingomyelinase, which is apparently required for their development. On the other hand, the sphingomyelinase product ceramide has previously been shown to delay parasite development. Moreover, ceramide triggers suicidal erythrocyte death or eryptosis, characterized by exposure of phosphatidylserine at the erythrocyte surface and cell shrinkage. Accelerated eryptosis of infected erythrocytes is considered to clear infected erythrocytes from circulating blood and, thus, to favourably influence the clinical course of malaria. The present experiments explored whether the sphingomyelinase inhibitor amitriptyline or genetic knockout of host acid sphingomyelinase influence in vitro parasite growth, eryptosis of Plasmodium falciparum-infected human erythrocytes, in vivo parasitemia and survival of P. berghei-infected mice. Phosphatidylserine exposure was determined by annexin V-binding and cell volume by forward scatter in FACS analysis. In vitro infection of human erythrocytes increased annexin-binding, an effect blunted in the presence of amitriptyline (>= 50 mu M). Amitriptyline did not significantly alter intraerythrocytic parasite development but significantly (>= 1 mu M) delayed the increase in parasitemia in vitro. Most importantly, amitriptyline treatment (1 mM in drinking water) resulted in a significant delay of parasitemia and death of infected mice. However, upon infection, ceramide formation was stimulated in both, acid sphingomyelinase knockout mice ( Smpd1(-/-)) and their wild type littermates (Smpd1(+/+)). Parasitemia following P. berghei infection was significantly lower in Smpd1(-/-) than in Smpd1(+/+) mice but did not significantly extend the life span of infected animals. In conclusion, mammalian and parasite sphingomyelinase contribute to ceramide formation during malaria, whereby the parasite sphingomyelinase ultimately determines the course of the infection. Amitriptyline presumably blocks both sphingomyelinases and, thus, its use might be a novel strategy to treat malaria. Copyright (c) 2008 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据