4.5 Article

Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination

期刊

CELLULAR MICROBIOLOGY
卷 17, 期 3, 页码 369-388

出版社

WILEY
DOI: 10.1111/cmi.12373

关键词

-

资金

  1. Mission pour la Recherche et I'Innovation Scientifique - Delegation Generale a I'Armement (MRIS/DGA)
  2. CNRS

向作者/读者索取更多资源

Epsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9)M and 10(-7)M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca2+ concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca2+ oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca2+ signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据