4.6 Article

Molecular characterization of volume-sensitive SKCa channels in human liver cell lines

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.2002.282.1.G116

关键词

hepatocyte; cholangiocyte; cell volume; apamin

向作者/读者索取更多资源

In human liver, Ca2+ dependent changes in membrane K+ permeability play a central role in coordinating functional interactions between membrane transport, metabolism, and cell volume. On the basis of the observation that K+ conductance is partially sensitive to the bee venom toxin apamin, we aimed to assess whether small-conductance Ca2+-sensitive K+ (SKCa) channels are expressed endogenously and contribute to volume-sensitive K+ efflux and cell volume regulation. We isolated a full-length 2,140-bp cDNA (hSK2) highly homologous to rat brain rSK2 cDNA, including the putative apamin-sensitive pore domain, from a human liver cDNA library. Identical cDNAs were isolated from primary human hepatocytes, human HuH-7 hepatoma cells, and human Mz-ChA-1 cholangiocarcinoma cells. Transduction of Chinese hamster ovary cells with a recombinant adenovirus encoding the hSK2-green fluorescent protein fusion construct resulted in expression of functional apamin-sensitive K+ channels. In Mz-ChA-1 cells, hypotonic (15% less sodium glutamate) exposure increased K+ current density (1.9 +/- 0.2 to 37.5 +/- 7.1 pA/pF; P < 0.001). Apamin (10-100 nM) inhibited K+ current activation and cell volume recovery from swelling. Apamin-sensitive SKCa channels are functionally expressed in liver and biliary epithelia and likely contribute to volume-sensitive changes in membrane K+ permeability. Accordingly, the hSK2 protein is a potential target for pharmacological modulation of liver transport and metabolism through effects on membrane K+ permeability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据