4.8 Article

The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 19, 期 1, 页码 24-38

出版社

OXFORD UNIV PRESS
DOI: 10.1093/oxfordjournals.molbev.a003979

关键词

green algae; Mesostigma viride; mitochondrial DNA; group I introns; group II introns; trans-splicing

向作者/读者索取更多资源

To gain insights into the nature of the mitochondrial genome in the common ancestor of all green plants, we have completely sequenced the mitochondrial DNA (mtDNA) of Mesostigma viride. This green alga belongs to a morphologically heterogeneous class (Prasinophyceae) that includes descendants of the earliest diverging green plants. Recent phylogenetic analyses of ribosomal RNAs (rRNAs) and concatenated proteins encoded by the chloroplast genome identified Mesostigma as a basal branch relative to the Streptophyta and the Chlorophyta, the two phyla that were previously thought to contain all extant green plants. The circular mitochondrial genome of Mesostigma resembles the mtDNAs of green algae occupying a basal position within the Chlorophyta in displaying a small size (42,424 bp) and a high gene density (86.6% coding sequences). It contains 65 genes that are conserved in other mtDNAs. Although none of these genes represents a novel coding sequence among green plant mtDNAs, four of them (rps1, sdh3, sdh4, and trnL[caa]) have not been reported previously in chlorophyte mtDNAs, and two others (rpl14 and trnI[gau]) have not been identified in the streptophyte mtDNAs examined so far (land-plant mtDNAs). Phylogenetic analyses of 19 concatenated mtDNA-encoded proteins favor the hypothesis that Mesostigma represents the earliest branch of green plant evolution. Four group I introns (two in rn1 and two in cox1) and three group 11 introns (two in nad3 and one in cox2), two of which are trans-spliced at the RNA level, reside in Mesostigma mtDNA. The insertion sites of the three group 11 introns are unique to this mtDNA, suggesting that trans-splicing arose independently in the Mesostigma lineage and in the Streptophyta. The few structural features that can be regarded as ancestral in Mesostigma mtDNA predict that the common ancestor of all green plants had a compact mtDNA containing a minimum of 75 genes and perhaps two group I introns. Considering that the mitochondrial genome is much larger in size in land plants than in Mesostigma, we infer that mtDNA size began to increase dramatically in the Streptophyta either during the evolution of charophyte green algae or during the transition from charophytes to land plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据