4.5 Article

Selective and specific internalization of clostridial C3 ADP-ribosyltransferases into macrophages and monocytes

期刊

CELLULAR MICROBIOLOGY
卷 12, 期 2, 页码 233-247

出版社

WILEY
DOI: 10.1111/j.1462-5822.2009.01393.x

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [BA 2087/1-3]
  2. Sonderforschungsbereich [487]
  3. TP [A5]
  4. Fonds der Chemischen Industrie

向作者/读者索取更多资源

The C3 transferases from Clostridium botulinum (C3bot) and Clostridium limosum (C3lim) mono-ADP-ribosylate and thereby inactivate RhoA, -B and -C of eukaryotic cells. Due to their extremely poor cellular uptake, C3 transferases were supposed to be exoenzymes rather than exotoxins, challenging their role in pathogenesis. Here, we report for the first time that low concentrations of both C3lim and C3bot are selectively internalized into macrophages/monocytes in less than 3 h, inducing the reorganization of the actin cytoskeleton by ADP-ribosylation of Rho. We demonstrate that C3 transferases are internalized into the cytosol of macrophages/monocytes via acidified early endosomes. Bafilomycin A1, an inhibitor of endosomal acidification, protected J774A.1 macrophages and human promyelotic leukaemia cells (HL-60) from intoxication by C3. Moreover, confocal laser scanning microscopy revealed colocalization of C3 with early endosomes. An extracellular acidic pulse enabled direct translocation of cell surface-bound C3 across the cytoplasmic membrane to the cytosol. In line with this finding, both C3 proteins exhibited membrane activity in lipid bilayer membranes only under acidic conditions (pH < 5.5). In conclusion, we identified macrophages/monocytes as target cells for clostridial C3 transferases and shed light on their selective uptake mechanism, which might contribute to understand the role of C3 transferases in pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据