4.5 Article

The innate immune molecule, NOD1, regulates direct killing of Helicobacter pylori by antimicrobial peptides

期刊

CELLULAR MICROBIOLOGY
卷 12, 期 5, 页码 626-639

出版社

WILEY
DOI: 10.1111/j.1462-5822.2009.01421.x

关键词

-

资金

  1. National Health and Research Council (NHMRC) [334127]
  2. Canadian Institutes of Health
  3. Howard Hughes Medical Institute
  4. NHMRC Biomedical Postgraduate Research Scholarship
  5. Monash Graduate and Departmental Scholarship

向作者/读者索取更多资源

P>The cytosolic innate immune molecule, NOD1, recognizes peptidoglycan (PG) delivered to epithelial cells via the Helicobacter pylori cag pathogenicity island (cagPAI), and has been implicated in host defence against cagPAI+H. pylori bacteria. To further clarify the role of NOD1 in host defence, we investigated NOD1-dependent regulation of human beta-defensins (DEFBs) in two epithelial cell lines. Our findings identify that NOD1 activation, via either cagPAI+ bacteria or internalized PG, was required for DEFB4 and DEFB103 expression in HEK293 cells. To investigate cell type-specific induction of DEFB4 and DEFB103, we generated stable NOD1 'knockdown' (KD) and control AGS cells. Reporter gene assay and RT-PCR analyses revealed that only DEFB4 was induced in an NOD1-/cagPAI-dependent fashion in AGS cells. Moreover, culture supernatants from AGS control, but not AGS NOD1 KD cells, stimulated with cagPAI+H. pylori, significantly reduced H. pylori bacterial numbers. siRNA studies confirmed that human beta-defensin 2 (hBD-2), but not hBD-3, contributes to the antimicrobial activity of AGS cell supernatants against H. pylori. This study demonstrates, for the first time, the involvement of NOD1 and hBD-2 in direct killing of H. pylori bacteria by epithelial cells and confirms the importance of NOD1 in host defence mechanisms against cagPAI+H. pylori infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据