4.5 Article

Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response

期刊

CELLULAR MICROBIOLOGY
卷 11, 期 6, 页码 911-926

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1462-5822.2009.01301.x

关键词

-

资金

  1. American Heart Association [0535451Z]
  2. National Institute of Health [R01AI069344, R03AI073326, R01GM069800]
  3. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R03AI073326, R01AI069344] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM069800] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The Legionella pneumophila Dot/Icm type IV secretion system is essential for the biogenesis of a phagosome that supports bacterial multiplication, most likely via the functions of its protein substrates. Recent studies indicate that fundamental cellular processes, such as vesicle trafficking, stress response, autophagy and cell death, are modulated by these effectors. However, how each translocated protein contributes to the modulation of these pathways is largely unknown. In a screen to search substrates of the Dot/Icm transporter that can cause host cell death, we identified a gene whose product is lethal to yeast and mammalian cells. We demonstrate that this protein, called SidI, is a substrate of the Dot/Icm type IV protein transporter that targets the host protein translation process. Our results indicate that SidI specifically interacts with eEF1A and eEF1B gamma, two components of the eukaryotic protein translation elongation machinery and such interactions leads to inhibition of host protein synthesis. Furthermore, we have isolated two SidI substitution mutants that retain the target binding activity but have lost toxicity to eukaryotic cells, suggesting potential biochemical effect of SidI on eEF1A and eEF1B gamma. We also show that infection by L. pneumophila leads to eEF1A-mediated activation of the heat shock regulatory protein HSF1 in a virulence-dependent manner and deletion of sidI affects such activation. Moreover, similar response occurred in cells transiently transfected to express SidI. Thus, inhibition of host protein synthesis by specific effectors contributes to the induction of stress response in L. pneumophila-infected cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据