4.6 Review

Selection pressures on stomatal evolution

期刊

NEW PHYTOLOGIST
卷 153, 期 3, 页码 371-386

出版社

WILEY
DOI: 10.1046/j.0028-646X.2001.00334.x

关键词

embryophytes; evolution; life forms; photosynthesis; water relations

向作者/读者索取更多资源

Fossil evidence shows that stomata have occurred in sporophytes and (briefly) gametophytes of embryophytes during the last 400 m yr. Cladistic analyses with hornworts basal are consistent with a unique origin of stomata, although cladograms with hornworts as the deepest branching embryophytes require loss of stomata early in the evolution of liverworts. Functional considerations suggest that stomata evolved from pores in the epidermis of plant organs which were at least three cell layers thick and had intercellular gas spaces and a cuticle; an endohydric conducting system would not have been necessary for low-growing rhizophytes, especially in early Palaeozoic CO2-rich atmospheres. The 'prestomatal state' (pores) would have permitted higher photosynthetic rates per unit ground area. Functional stomata, and endohydry, permit the evolution of homoiohydry and the loss of vegetative desiccation tolerance and plants > 1 m tall. Stomatal functioning would then have involved maintenance of hydration, and restricting the occurrence of xylem embolism, under relatively desiccating conditions at the expense of limiting carbon acquisition. The time scale of environmental fluctuations over which stomatal responses can maximize carbon gain per unit water loss varies among taxa and life forms. (C) New Phytologist (2002) 153: 371-386.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据