4.7 Article

Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0045-7825(02)00421-8

关键词

uncertainty; random diffusion; polynomial chaos

向作者/读者索取更多资源

We present a generalized polynomial chaos algorithm for the solution of stochastic elliptic partial differential equations subject to uncertain inputs. In particular, we focus on the solution of the Poisson equation with random diffusivity, forcing and boundary conditions. The stochastic input and solution are represented spectrally by employing the orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener [Amer. J. Math. 60 (1938) 897]. A Galerkin projection in random space is applied to derive the equations in the weak form. The resulting set of deterministic equations for each random mode is solved iteratively by a block Gauss-Seidel iteration technique. Both discrete and continuous random distributions are considered, and convergence is verified in model problems and against Monte Carlo simulations. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据