4.1 Article

Core-hole screening effects in the initial state of Auger emission across the transition metal series

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0368-2048(01)00365-6

关键词

Auger spectra; electron structure; relaxation; screening; transition metals

向作者/读者索取更多资源

Supercell method is used to study the relaxation and screening effects on the initial state of the Auger transition in metals. Our consideration is based on the assumption that when a core-hole exists long enough before the Auger transition occurs, the occupied valence states relax to screen the core-hole which results in a redistribution of the valence electrons, in particular within the atom that contains the core-hole. In order to make the interaction between the core-holes sites at different atoms negligible, the real metal is simulated by supercells repeated periodically. In each supercell one atom is considered to have a core-hole and many others not to have one. The electronic states concerned by the Auger transition are calculated by the self-consistent full-potential linearized augmented plane wave (FLAPW) method. Different responses of the local valence band on the site of the core-hole have been shown depending on whether the d-bands are partially or completely filled. According to the final state rule, the screening to the two holes in the local valence band after the Auger transition has also been considered, as examples, for Ni and Cu metals. The result shows that, with the existence of two holes in them, the states of the local valence band of Cu relax to atomic-like impurity states, while the local valence band of Ni changes to a much narrow band at the bottom of the original band. As examples, L3VV and M1VV Auger spectral profiles of Cu have been calculated in reasonably good agreement with the experiment. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据