4.7 Article

Heterologous expression and biochemical characterization of an NAD(P)H : quinone oxidoreductase from the hemiparasitic plant Triphysaria versicolor

期刊

PLANT PHYSIOLOGY AND BIOCHEMISTRY
卷 40, 期 3, 页码 265-272

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/S0981-9428(02)01361-X

关键词

allelopathy; parasitic plant; rhizosphere signaling; root organogenesis

向作者/读者索取更多资源

Quinones are widespread secondary metabolites that function as signal molecules between organisms in the rhizosphere. Quinones are particularly important in the exchange of chemical signals between plant roots, a phenomenon classically termed allelopathy. The bioactivity of quinones is due in large part to radical intermediates formed during redox cycling between quinone and hydroquinone states. In order to investigate the role of quinone oxidoreductases in processing quinone signals exchanged between plant roots, we characterized an NAD(P)H-dependent quinone reductase expressed in roots of the parasitic plant Triphysaria versicolor (TvQR2). The predicted amino acid sequence encoded by TvQR2 shares homology with quinone reductases from Archaea, Eubacteria and Eukaryota organisms. The complete TvQR2 cDNA was cloned into the fungus Pichia pastoris and the heterologous protein purified. The recombinant protein reduced a variety of quinones and napthoquinones, including several of allelopathic significance, using either NADH or NADPH as electron donors. The protein had an absorption spectrum consistent with it being a flavoprotein and was inhibited by the quinone reductase inhibitor dicumarol. We propose that the TvQR2 protein functions as a quinone reductase in plant roots to mitigate the toxicity of exogenous quinones in the rhizosphere. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据