4.7 Article

On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization

期刊

CELL DEATH AND DIFFERENTIATION
卷 9, 期 1, 页码 65-81

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.cdd.4400951

关键词

Leishmania major; cell death; apoptosis; mitochondria; DNA fragmentation; cysteine proteinase; (cytochrome c; Bax; evolution; unicellular eukaryote)

向作者/读者索取更多资源

Leishmania major is a protozoan parasite from one of the most ancient phylogenic branches of unicellular eukaryotes, and containing only one giant mitochondrion. Here we report that staurosporine, that induces apoptosis in all mammalian nucleated cells, also induces in L. major a death process with several cytoplasmic and nuclear features of apoptosis, including cell shrinkage, phosphatidyl serine exposure, maintenance of plasma membrane integrity, mitochondrial transmembrane potential (DeltaPsim) loss and cytochrome c release, nuclear chromatin condensation and fragmentation, and DNA degradation. Nuclear apoptosis-like features were prevented by cysteine proteinase inhibitors, and cell free assays using dying L. major cytoplasmic extracts indicated that the cysteine proteinases involved (1) also induced nuclear apoptosis-like features in isolated mammalian nuclei, and (ii) shared at least two nuclear substrates, but no cleavage site preference, with human effector caspases. Finally, isolated L. major mitochondria released cytochrome c and cysteine proteinases with nuclear pro-apoptotic activity when incubated with human recombinant Bax, even (although much less efficiently) when Bax was deleted of its transmembrane domain required for insertion in mitochondrial outermembranes, implying that L. major mitochondrion may express proteins able to interact with Bax. The recruitment of cysteine proteinases and mitochondria to the cell death machinery may be of very ancient evolutionary origin, Alternately, host/parasite interactions may have exerted selective pressures on the cell death phenotype of kinetoplastid parasites, resulting in the more recent emergence of an apoptotic machinery through a process of convergent evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据