4.5 Article

Behavior of dilative sand interfaces in a geotribology framework

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0241(2002)128:1(25)

关键词

granular materials; interfaces; shear stress; volume change; topography

向作者/读者索取更多资源

Frictional resistance along the exterior of an embedded structure or structural element develops through relative displacement at the interface. An understanding of how surface topography influences interface strength and deformation behavior is required to develop comprehensive interface models for soil-structure analyses, to develop interface design methods and for producing enhanced construction materials. This paper presents the results of an investigation to quantify the influence of surface topography on shear stress and volume change behavior of dilative granular material interface systems. The root spacing, asperity spacing, asperity height, and asperity angle of machined, idealized surfaces are systematically varied. Direct interface shear test results using Ottawa 20/30 sand and glass microbeads show that maximum interface efficiency for these materials is achieved for a asperity spacing to median grain diameter ratio between 1.0 and 3.0, and an asperity height to median grain diameter ratio greater than 0.9. An asperity angle of 50 degrees or greater yields maximum efficiency for any given asperity spacing or height. The results suggest that interface behavior is governed by predictable geometric and mechanical relationships that are applicable to more complex manufactured surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据