4.5 Article

Finite volume analysis of dynamic fracture phenomena - II. A cohesive zone type methodology

期刊

INTERNATIONAL JOURNAL OF FRACTURE
卷 113, 期 2, 页码 125-151

出版社

SPRINGER
DOI: 10.1023/A:1015563602317

关键词

brittle fracture; cohesive zone; finite volumes; rapid crack propagation

向作者/读者索取更多资源

A truly predictive dynamic fracture model would require detailed information about the local fracture process. For instance, recent experimental evidence has conclusively demonstrated that rapid crack propagation (RCP) in brittle polymers such as PMMA is accompanied by the nucleation, growth, interaction and coalescence of microcracks and the advancing macroscopic fracture. Some insights into this phenomenon are offered and a novel computational model of this aspect of dynamic fracture is proposed. The procedure is based upon local material (cohesive) strength considerations. Here, the initial development of such procedures is presented. Application is at this stage restricted to single crack problems so that the effects of various geometrical, but more importantly, cohesive parameters on predicted fractures may be examined. Extension of the cohesive computational procedures of this work to multiple crack problems is proposed to be straightforward and without the need for extensive reconstructing of the computational procedures outlined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据