3.8 Article

The lumbar bone mineral density is affected by long-term poor metabolic control in adolescents with type 1 diabetes mellitus

期刊

HORMONE RESEARCH
卷 58, 期 6, 页码 266-272

出版社

KARGER
DOI: 10.1159/000066441

关键词

lumbar bone mineral density; bone resorption; deoxypyridinoline; dual-energy X-ray absorptiometry; metabolic control; type 1 diabetes mellitus

向作者/读者索取更多资源

Aim: To analyze whether bone mineral density (BMD) and bone resorption status are influenced by long-term metabolic control and duration of disease in adolescents with long-standing type 1 diabetes mellitus. Methods: Twenty-seven adolescents (age 13.1 +/- 1.7 years, duration of diabetes 6.9 +/- 3.0 years) were studied. The BMD, expressed as z score, was measured at the lumbar spine (L1-L4) using dual-energy X-ray absorptiometry, while the urinary excretion of total deoxypiridinoline (Dpyd), a marker of bone resorption, was measured by immunoassay and was corrected by creatinine (Cr). Linear and multivariate correlations between lumbar BMD z score or Dpyd/Cr excretion and age and disease variables [short-term (Hb A(1c latest)) or long-term (Hb A(1c whole duration)) metabolic control, duration, 'diabetes impact index' (mean Hb A(1c whole duration) x duration of disease in months)] were sought. Results: In diabetic subjects the mean BMD z score was -0.44 +/- (SD) 1.02 (95% Cl: -0.03; -0.84), and the Dpyd/Cr excretion was not increased. A negative correlation was found between lumbar BMD z score and age (r -0.59; p = 0.001), duration (r -0.39; p = 0.04), and the diabetes impact index (r -0.4; p = 0.04). The Dpyd/Cr ratio correlated negatively with age (r -0.40; p = 0.04) and positively with height velocity (r 0.42; p = 0.04). By using multiple linear regression, age showed a significant inverse correlation with lumbar BMD z score (P = -0.39; p = 0.0005). A negative correlation was found between lumbar BMD z score and Hb A(1c whole duration) (beta = -0.40; p = 0.02) or diabetes impact index (beta = -0.001; p = 0.01). Conclusions: Poor metabolic control may expose adolescents with long-standing type 1 diabetes to the risk of developing osteopenia in adult age. Optimization of metabolic control in growing diabetic children may prevent osteoporosis in later life. Copyright (C) 2002 S. Karger AG, Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据