4.7 Article

Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster

期刊

TREE PHYSIOLOGY
卷 22, 期 1, 页码 11-19

出版社

OXFORD UNIV PRESS
DOI: 10.1093/treephys/22.1.11

关键词

fertilizer; nitrogen allocation; nitrogen storage; N : P ratio; orthophosphate; photosynthesis

类别

向作者/读者索取更多资源

We tested the hypothesis that photosynthetic and growth responses to phosphorus (P) are functions of differences in the partitioning of nitrogen (N) among different compounds, particularly ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We tested this hypothesis in: (a) a greenhouse experiment with mycorrhizal seedlings of Pinus pinaster Ait. grown in sand culture for 4 months with six factorial combinations of N (0.125 and 2.0 mM) and P (0.02, 0.08 and 0.34 mM); and (b) a field study in which P was applied at five rates (up to 175 kg ha(-1)) to 2-year-old P. pinaster growing on P-deficient siliceous sand. After 4 months of nutrient addition or 2 years after fertilizer application, we measured light-saturated rates of photosynthesis, growth, and N and P allocation in needles. Growth of P. pinaster increased significantly with increasing concentrations of P, as did the concentration of P in needles. Concentrations of P and Rubisco were positively related, whereas those of N and Rubisco were unrelated. At low-P supply, the Rubisco/Chl ratio varied between 8.5 and 12 mmol mol(-1). With P supply in excess of requirement (needle N:P ratio = 2-12) the Rubisco/Chl ratio increased to between 24 and 26 mmol mol(-1). Rates of light-saturated photosynthesis were unaffected by P supply because adequate concentrations of P were maintained in plants in all treatments. Orthophosphate accumulated in needles of plants receiving a high P supply, which may allow growth to continue for periods under P deficiency, provided that other nutrients also accumulate. In the case of N, Rubisco may fill this role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据