4.7 Article

Microwave-heating laboratory experiments for planetary mantle convection

期刊

JOURNAL OF FLUID MECHANICS
卷 777, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2015.347

关键词

boundary layers; geophysical and geological flows; mantle convection

资金

  1. Romanian-French bilateral project [1 RO-FR-22-2011]
  2. GENCI-IDRIS [2013-047033]
  3. [ANR-11-IS04-0004]

向作者/读者索取更多资源

Thermal evolution of telluric planets is mainly controlled by secular cooling and internal heating due to the decay of radioactive isotopes, two processes that are equivalent from the standpoint of convection dynamics. In a fluid cooled from above and volumetrically heated, convection is dominated by instabilities of the top boundary layer and the interior thermal structure is non-isentropic. Here we present innovative laboratory experiments where microwave radiation is used to generate uniform internal heat in fluids at high Prandtl number (>300) and high Rayleigh-Roberts number (ranging from 10(4) to 10(7)), appropriate for planetary mantle convection. Non-invasive techniques are employed to determine both temperature and velocity fields. We successfully validate the experimental results by conducting numerical simulations in three-dimensional Cartesian geometry that reproduce the experimental conditions. Scaling laws relating key characteristics of the thermal boundary layer, namely its thickness and temperature drop, to the Rayleigh-Roberts number have been established for both rigid and free-slip boundary conditions. A robust conclusion is that for rigid boundary conditions the internal temperature is significantly higher than for free-slip boundary conditions. Our scaling laws, coupled with plausible physical parameters entering the Rayleigh-Roberts number, enable us to calculate the mantle potential temperature for the Earth and Venus, two telluric planets with different mechanical boundary conditions at their surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据