4.7 Article

TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells

期刊

CELLULAR & MOLECULAR IMMUNOLOGY
卷 11, 期 2, 页码 150-159

出版社

CHIN SOCIETY IMMUNOLOGY
DOI: 10.1038/cmi.2013.59

关键词

DAMPs; dendritic cells; chemotherapy; immunotherapy; TLR4

资金

  1. National Natural Science Foundation of China [81273332, 81101657, 81123006]
  2. National High Technology Research, Development Program of China [2012AA020902]

向作者/读者索取更多资源

The combination of immunotherapy and chemotherapy is regarded as a promising approach for the treatment of certain types of cancer. However, the underlying mechanisms need to be fully investigated to guide the design of more efficient protocols for cancer chemoimmunotherapy. It is well known that danger-associated molecular patterns (DAMPs) can activate immune cells, including dendritic cells (DCs), via Toll-like receptors (TLRs); however, the role of DAMPs released from chemical drug-treated tumor cells in the activation of the immune response needs to be further elucidated. Here, we found that colorectal cancer (CRC) cells treated with oxaliplatin (OXA) and/or 5-fluorouracil (5-Fu) released high levels of high-mobility group box 1 (HMGB1) and heat shock protein 70 (HSP70). After OXA/5-Fu therapy, the sera of CRC patients also exhibited increased levels of HMGB1 and HSP70, both of which are well-known DAMPs. The supernatants of dying CRC cells treated with OXA/5-Fu promoted mouse and human DC maturation, with upregulation of HLA-DR, CD80 and CD86 expression and enhancement of IL-1 beta, TNF-alpha, MIP-1 alpha, MIP-1 beta, RANTES and IP-10 production. Vaccines composed of DCs pulsed with the supernatants of chemically stressed CRC cells induced a more significant IFN-gamma-producing Th1 response both in vitro and in vivo. However, the supernatants of chemically stressed CRC cells failed to induce phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating an essential role of TLR4 in DAMP-induced DC maturation and activation. Furthermore, pulsing with the supernatants of chemically stressed CRC cells did not efficiently induce an IFN-gamma-producing Th1 response in TLR4-deficient DCs. Collectively, these results demonstrate that DAMPs released from chemically stressed cancer cells can activate DCs via TLR4 and enhance the induction of an anti-tumor T-cell immune response, delineating a clinically relevant immuno-adjuvant pathway triggered by DAMPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据