4.2 Article

Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: The influence of the inferior caval anastomosis

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.1632523

关键词

-

向作者/读者索取更多资源

Fluid dynamics of Total Cavo-Pulmonary Connection (TCPC) were studied in 3-D models based on real dimensions obtained by Magnetic Resonance (MR) images. Models differ in terms of shape (intra- or extra-cardiac conduit) and cross section (with or without patch enlargement) of the inferior caval (IVC) anastomosis connection. Realistic pulsatile flows were submitted to both the venae cavae, while porous portions were added at the end of the pulmonary arteries to reproduce the pulmonary afterload. The dissipated power and the flow distribution into the lungs were calculated at different values of pulmonary arteriolar resistances (PAR). The most important results are: i) power dissipation in different TCPC designs is influenced by the actual cross sectional area of the IVC anastomosis and ii) the inclusion of a patch minimizes the dissipated power (range 4-13 mW vs. 14-56 mW). Results also show that the perfusion of the right lung is between 15% and 30% of the whole IVC blood flow when the PAR are evenly distributed between the right and the left lung.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据