3.9 Article

The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling

期刊

EUKARYOTIC CELL
卷 2, 期 6, 页码 1200-1210

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/EC.2.6.1200-1210.2003

关键词

-

向作者/读者索取更多资源

The echinocandin caspofungin is a new antifungal drug that blocks cell wall synthesis through inhibition of beta-(1-3)-glucan synthesis. Saccharomyces cerevisiae cells are able to tolerate rather high caspofungin concentrations, displaying high viability at low caspofungin doses. To identify yeast genes implicated in caspofungin tolerance, we performed a genome-wide microarray analysis. Strikingly, caspofungin treatment rapidly induces a set of genes from the protein kinase C (PKC) cell integrity signaling pathway, as well as those required for cell wall maintenance and architecture. The mitogen-activated protein kinase Slt2p is rapidly activated by phosphorylation, triggering signaling through the PKC pathway. Cells lacking genes such as SLT2, BCK1, and PKC1, as well as the caspofungin target gene, FKS1, display pronounced hypersensitivity, demonstrating that the PKC pathway is required for caspofungin tolerance. Notably, the cell surface integrity sensor Wsc1p, but not the sensors Wsc2-4p and Mid2p, is required for sensing caspofungin perturbations. The expression modulation of PKC target genes requires the transcription factor RIm1p, which controls expression of several cell wall synthesis and maintenance genes. Thus, caspofungin-induced cell wall damage requires Wsc1p as a dedicated sensor to launch a protective response through the activated salvage pathway for de novo cell wall synthesis. Our results establish caspofungin as a specific activator of Slt2p stress signaling in baker's yeast.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据