4.3 Article

Optimization procedure for cost effective BMP placement at a watershed scale

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1752-1688.2003.tb04421.x

关键词

watershed management; genetic algorithm; spatial optimization; modeling; geographic information systems; nonpoint source pollution; sediment delivery

向作者/读者索取更多资源

A combinatorial optimization procedure for best management practice (BMP) placement at the watershed level facilitates selection of cost effective BMP scenarios to control nonpoint source (NPS) pollution. A genetic algorithm (GA) was selected from among several optimization heuristics. The GA combines an optimization component written in the C++ language with spatially variable NPS pollution prediction and economic analysis components written within the ArcView geographic information system. The procedure is modular in design, allowing for component modifications while maintaining the basic conceptual framework. An objective function was developed to lexicographically optimize pollution reduction followed by cost increase. Scenario cost effectiveness is then calculated for scenario comparisons. The NPS pollutant fitness score allows for evaluation of multiple pollutants, based on prioritization of each pollutant. The economic component considers farm level public and private costs, cost distribution, and land area requirements. Development of a sediment transport function, used with the Universal Soil Loss Equation, allows the optimization procedure to run within a reasonable timeframe. The procedure identifies multiple near optimal solutions, providing an indication of which fields have a more critical impact on overall cost effectiveness and flexibility in the final solution selected for implementation,The procedure was demonstrated for a 1,014-ha watershed in the Ridge and Valley physiographic region of Virginia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据