4.3 Article Proceedings Paper

Design and synthesis of fluorescent beta-cyclodextrins for the enantioselective sensing of alpha-amino acids

期刊

CHIRALITY
卷 15, 期 -, 页码 S30-S39

出版社

WILEY
DOI: 10.1002/chir.10272

关键词

enantiomers; chiral discrimination; fluorescent sensors; copper(II) complexes; ligand exchange

向作者/读者索取更多资源

Fluorescent monofunctionalized beta-cyclodextrins bearing a copper(II) binding side arm and a dansyl group (CD-NH-AA-CH2CH2NH-DNS) were designed as enantioselective sensors for unmodified alpha-amino acids. The side arm was derived from amino acid synthons (AA = L- and D-phenylalanine (1 and 2), L- and D-phenylglycine (3 and 4), L-proline (5), and L-cyclohexylglycine (6)) and was chosen in order to contain an amide, an amine, and a sulphonamide group. Enantioselectivity was evaluated by addition of copper(II) complexes of D- or L-valine and D- or L-proline. Chiral discrimination in the fluorescence response was observed in all cases, due to a ligand exchange process. The best conditions for these experiments were found to be the use of an excess (10:1) of the copper complex. The cyclodextrin 4 containing a D-phenylglycine unit was found to be poorly enantioselective, as found for 2, suggesting that the best design can be obtained by using L-amino acids. All L-amino acid containing cyclodextrins showed good enantioselectivities, some of which were higher than those already reported for 1. Other analytes related to amino acids were studied using cyclodextrins 1 and 3. Enantiomers of alpha,alpha-disubstituted amino acids, N-methylamino acids, and amino acid amides were found to be discriminated, while beta-phenylalanine and other molecules bearing a poor anchoring group at the alpha-carbon gave poor enantioselectivity. On the basis of the present data a model for the recognition process, based on the formation of ternary diastereomeric complexes, is proposed. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据