4.4 Article Retracted Publication

被撤回的出版物: Induced Endothelial Cells Enhance Osteogenesis and Vascularization of Mesenchymal Stem Cells (Retracted Article. See vol 191, pg 430, 2010)

期刊

CELLS TISSUES ORGANS
卷 190, 期 4, 页码 185-193

出版社

KARGER
DOI: 10.1159/000218139

关键词

Vascularization; Mesenchymal stem cells; Endothelial cells; Osteogenesis

资金

  1. Shanghai Baoshan Foundation for Natural Sciences

向作者/读者索取更多资源

Adequate vascularization remains one of the major challenges in bone tissue engineering. Since the microvascular endothelium is of benefit to osteogenesis and vascularization when in direct contact with bone marrow mesenchymal stem cells (BM-MSCs), we investigated whether endothelial cells induced from BM-MSCs have the same effect on BM-MSCs in vitro and in vivo. BM-MSCs were isolated, characterized and induced into endothelial-like cells (induced endothelial cells, IECs) in endothelial cell growth medium 2. BM-MSCs and IECs were co-cultured with direct contact. In vitro, IECs were evaluated in terms of their characteristics of endothelial cells and their effects on the osteogenic potential of BM-MSCs by cell morphology, immunofluorescent staining, alkaline phosphatase activity and osteocalcin synthesis. In vivo, scaffolds consisting of beta-tricalcium phosphate co-seeded with IECs and BM-MSCs were transplanted into mouse dorsal pockets, and a histological analysis was performed to determine the extent of new bone and blood vessel formation. Isolated BM-MSCs were positive for the markers CD105 and CD29 and negative for hematopoietic markers CD34, CD45 and CD14. They were able to differentiate into adipocytes, osteocytes and chondrocytes in respective media. Immunofluorescent analysis with von Willebrand factor and CD31 staining showed that BM-MSCs could differentiate into endothelial cells. The alkaline phosphatase activity and the osteocalcin content of the co-culture group were obviously higher than those of any other group (p < 0.05). Histologically, newly formed bone and vessels were more evident in the culture group (p < 0.05). Our findings suggest that IECs could efficiently stimulate the in vitro differentiation of osteoblast-like cells and promote osteogenesis in vivo by direct contact with BM-MSCs. Copyright (C) 2009 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据