4.4 Article

Modelling of the cutting temperature distribution under the tool flank wear effect

出版社

PROFESSIONAL ENGINEERING PUBLISHING LTD
DOI: 10.1243/095440603771665232

关键词

cutting temperature; flank wear; heat source method

向作者/读者索取更多资源

The understanding of cutting temperature distribution at the presence of tool wear can aid in addressing important metal cutting issues such as part surface integrity, tool life and dimensional tolerance under practical operating conditions. The effect of tool wear on the cutting temperature distribution was first modelled by Chao and Trigger and there have been very few followers since. In Chao's model, the primary heat source was assumed to have no effect on the workpiece temperature rise and the chip temperature rise was treated as a bulk quantity. This paper analytically quantifies the tool wear effect by taking into account the contributions of the primary heat source and considering the distribution of chip temperature rise. On the chip side, the primary shear zone is modelled as a uniform moving oblique band heat source and the secondary shear zone as a non-uniform moving band heat source within a semi-infinite medium. On the tool side, the effects of both the secondary and the rubbing heat sources are modelled as non-uniform static rectangular beat sources within a semi-infinite medium. For the workpiece side, the study models the primary shear zone as a uniform moving oblique band heat source and the rubbing heat source as a non-uniform moving band heat source within a semi-infinite medium. The proposed model is verified based on the published experimental data in the orthogonal cutting of Armco iron. Furthermore, a comparison case is presented on the temperature variation with respect to cutting speed, feed rate and flank wear length.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据