4.5 Article

Sustained Running in Rats Administered Corticosterone Prevents the Development of Depressive Behaviors and Enhances Hippocampal Neurogenesis and Synaptic Plasticity Without Increasing Neurotrophic Factor Levels

期刊

CELL TRANSPLANTATION
卷 23, 期 4-5, 页码 481-492

出版社

SAGE PUBLICATIONS INC
DOI: 10.3727/096368914X678490

关键词

Hippocampal neurogenesis; Depression-like behavior; Synaptic plasticity; Physical exercise; Brain-derived neurotrophic factor; Insulin-like growth factor

资金

  1. University of Hong Kong Foundation for Educational Development and Research Limited
  2. State Key Laboratory of Brain and Cognitive Science
  3. University of Hong Kong
  4. fundamental research funds for the central universities [09ykpy25, 09ykpy31]
  5. Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, the University of Hong Kong

向作者/读者索取更多资源

We have previously shown that voluntary running acts as an anxiolytic and ameliorates deficits in hippocampal neurogenesis and spatial learning. It also reduces depression-like behaviors that are normally observed in rats that were administered either low (30 mg/kg) or moderate (40 mg/kg) doses of corticosterone (CORT). However, the protective effects of running were absent in rats treated with a high (50 mg/kg) dose of CORT. We examined whether allowing animals to exercise for 2 weeks prior and/or concurrently with the administration of 50 mg/kg CORT treatment could have similar protective effects. We examined hippocampal neurogenesis using immunohistochemical staining of proliferative and survival cells with the thymidine analogs (BrdU, CIdU, and IdU). In addition, we monitored synaptic protein expression and quantified the levels of neurotrophic factors in these animals as well as performing behavioral analyses (forced swim test and sucrose preference test). Our results indicate that the depressive phenotype and reductions in neurogenesis that normally accompany high CORT administration could only be prevented by allowing animals to exercise both prior to and concurrently with the CORT administration period. These animals also showed increases in both synaptophysin and PSD-95 protein levels, but surprisingly, neither brain-derived neurotrophic factor (BDNF) nor insulin-like growth factor 1 (IGF-1) levels were increased in these animals. The results suggest that persistent exercise can strengthen resilience to stress by promoting hippocampal neurogenesis and increasing synaptic protein levels, thereby reducing the deleterious effects of stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据