4.5 Article

Functional Evaluation of Primary Renal Cell/Biomaterial Neo-Kidney Augment Prototypes for Renal Tissue Engineering

期刊

CELL TRANSPLANTATION
卷 20, 期 11-12, 页码 1771-1790

出版社

SAGE PUBLICATIONS INC
DOI: 10.3727/096368911X566172

关键词

Kidney; Renal tissue engineering; Biomaterials; Regeneration; Neo-kidney augment

向作者/读者索取更多资源

Development of a tissue-engineered neo-kidney augment (NKA) requires evaluation of defined, therapeutically relevant cell and cell/biomaterial composites (NKA constructs) for regenerative potential in mammalian kidney. Previous work identified primary renal cell populations that extended survival and improved renal function in a rodent model of chronic kidney disease (CKD). This study extends that work toward the goal of developing NKA by (i) screening in vivo inflammatory and fibrotic responses to acellular biomaterials delivered to healthy rodent renal parenchyma, (ii) evaluating the functionality of renal cell/biomaterial combinations in vitro, (iii) generating NKA constructs by combining therapeutically relevant cell populations with biocompatible biomaterial, and (iv) evaluating in vivo neokidney tissue development in response to NKA constructs delivered to healthy rodent renal parenchyma. Gelatin and hyaluronic acid (HA)-based hydrogels elicited the least inflammatory and fibrotic responses in renal parenchyma relative to polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA) beads or particles and were associated with neovascularization and cellular infiltration by 4 weeks postimplantation. Renal cell populations seeded onto gelatin or HA-based hydrogels were viable and maintained a tubular epithelial functional phenotype during an in vitro maturation of 3 days as measured by transcriptomic, proteomic, secretomic, and confocal immunofluorescence assays. In vivo delivery of cell-seeded NKA constructs (bioactive renal cells + gelatin hydrogels) to healthy rodent renal parenchyma elicited neokidney tissue formation at 1 week postimplantation. To investigate a potential mechanism by which NKA constructs could impact a disease state, the effect of conditioned media on TGF-beta signaling pathways related to tubulo-interstitial fibrosis associated with CKD progression was evaluated. Conditioned medium was observed to attenuate TGF-beta-induced epithelial mesenchymal transition (EMT) in vitro in a human proximal tubular cell line (HK2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据