4.5 Article

Clinical Potential of Intravenous Neural Stem Cell Delivery for Treatment of Neuroinflammatory Disease in Mice?

期刊

CELL TRANSPLANTATION
卷 20, 期 6, 页码 851-869

出版社

SAGE PUBLICATIONS INC
DOI: 10.3727/096368910X543411

关键词

Neural stem cells (NSCs); Transplantation; Bioluminescence imaging; Experimental autoimmune encephalomyelitis; Cell migration

资金

  1. Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium) [G.0132.07, 1.5.021.09.N.00]
  2. University of Antwerp [BOF-KP 2006, BOF-NOI 2006]
  3. Flemish Institute for Science and Technology
  4. Flemish government
  5. Antwerp University Hospital
  6. [EC-FP6-NoE DiMI]
  7. [LSHB-CT-2005-512146 NoE]
  8. [LSHC-CT-2004-503569 EMIL]

向作者/读者索取更多资源

While neural stem cells (NSCs) are widely expected to become a therapeutic agent for treatment of severe injuries to the central nervous system (CNS), currently there are only few detailed preclinical studies linking cell fate with experimental outcome. In this study, we aimed to validate whether IV administration of allogeneic NSC can improve experimental autoimmune encephalomyelitis (EAE), a well-established animal model for human multiple sclerosis (MS). For this, we cultured adherently growing luciferase-expressing NSCs (NSC-Luc), which displayed a uniform morphology and expression profile of membrane and intracellular markers, and which displayed an in vitro differentiation potential into neurons and astrocytes. Following labeling with green fluorescent micron-sized iron oxide particles (f-MPIO-labeled NSC-Luc) or lentiviral transduction with the enhanced green fluorescent protein (eGFP) reporter gene (NSC-Luc/eGFP), cell implantation experiments demonstrated the intrinsic survival capacity of adherently cultured NSC in the CNS of syngeneic mice, as analyzed by real-time bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and histological analysis. Next, EAE was induced in C57BL/6 mice followed by IV administration of NSC-Luc/eGFP at day 7 postinduction with or without daily immunosuppressive therapy (cyclosporine A, CsA). During a follow-up period of 20 days, the observed clinical benefit could be attributed solely to CsA treatment. In addition, histological analysis demonstrated the absence of NSC-Luc/eGFP at sites of neuroinflammation. In order to investigate the absence of therapeutic potential, BLI biodistribution analysis of IV-administered NSC-Luc/eGFP revealed cell retention in lung capillaries as soon as 1-min postinjection, resulting in massive inflammation and apoptosis in lung tissue. In summary, we conclude that IV administration of NSCs currently has limited or no therapeutic potential for neuroinflammatory disease in mice, and presumably also for human MS. However, given the fact that grafted NSCs have an intrinsic survival capacity in the CNS, their therapeutic exploitation should be further investigated, and-in contrast to several other reports-will most likely be highly complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据