4.7 Article

A unifying framework for partial volume segmentation of brain MR images

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 22, 期 1, 页码 105-119

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2002.806587

关键词

expectation-maximization; Markov random field; Monte Carlo sampling; MRI; partial volume; segmentation

向作者/读者索取更多资源

Accurate brain tissue segmentation by intensity-based voxel classification of magnetic resonance (MR) images is complicated by partial volume (PV) voxels that contain a mixture of two or more tissue types. In this paper, we present a statistical framework for PV segmentation that encompasses and extends existing techniques. We start from a commonly used parametric statistical image model in which each voxel belongs to one single tissue type, and introduce an additional downsampling step that causes partial voluming along the borders between tissues. An expectation-maximization approach is used to simultaneously estimate the parameters of the resulting model and perform a PV classification. We present results on well-chosen simulated images and on real MR images of the brain, and demonstrate that the use of appropriate spatial prior knowledge not only improves the classifications, but is often indispensable for robust parameter estimation as well. We conclude that general robust PV segmentation of MR brain images requires statistical models that describe the spatial distribution of brain tissues more accurately than currently available models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据