4.7 Article Proceedings Paper

Hardness trends in micron scale indentation

期刊

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS
卷 51, 期 11-12, 页码 2037-2056

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2003.09.011

关键词

hardness; indentation test; strain hardening; strain gradient plasticity; material length parameters

向作者/读者索取更多资源

A continuum theory for elastic-plastic solids that accounts for the size-dependence of strain hardening is employed to analyze trends in the indentation hardness test. Strain gradient plasticity theory incorporates an elevation of flow stress when non-uniform plastic deformations occur at the micron scale. Extensive experimental data exists for size-dependence of indentation hardness in the micron range for conical (pyramidal) indenters, and recent data delineates trends for spherical indenters. Deformation induced by rigid conical and spherical indenters is analyzed in two ways: by exploiting an approximation based on spherically symmetric void expansion and by finite element computations. Trends are presented for hardness as a function of the most important variables in the indentation test, including the size of the indent relative to the material length parameters, the strain hardening exponent, the ratio of initial yield stress to Young's modulus, and the geometry of the indenter. The theory rationalizes seemingly different trends for conical and spherical indenters and accurately simulates hardness data presented recently for iridium, a low yield strain/high hardening material. The dominant role of one of the material length parameters is revealed, and it is suggested that the indentation test may the best means of measuring this parameter. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据