3.8 Article Proceedings Paper

Characterization of angiotensin II-receptor subtypes in podocytes

期刊

JOURNAL OF LABORATORY AND CLINICAL MEDICINE
卷 142, 期 5, 页码 313-321

出版社

MOSBY-ELSEVIER
DOI: 10.1016/S0022-2143(03)00139-2

关键词

-

向作者/读者索取更多资源

Glomerular podocytes play a key role in maintaining the integrity of the glomerular filtration barrier. This function may be regulated by angiotensin II (Ang II) through activation of cell-surface receptors. Although studies suggest that podocytes express receptors for Ang II, the Ang II binding site has not been characterized with radioligand binding techniques. We therefore used iodine 125-labeled Ang II to monitor Ang II-receptor density during differentiation of a mouse podocyte cell line. Scatchard analyses of equilibrium binding data revealed a single class of high-affinity binding sites (dissociation constant similar to3 nmol/L) in both differentiated and nondifferentiated cells. During differentiation, the density of Ang II-receptor sites increased roughly 15-fold in differentiated podocytes (maximal density of specific binding sites 881 fmol/mg protein) compared with that in nondifferentiated cells (52 fmol/mg protein; P < .005). Glomerular podocytes expressed messenger RNA for AT1A, AT1B, and AT2 receptor subtypes, and competitive binding studies found that differentiated podocytes expressed mostly AT1 receptors (similar to75%) with lesser amounts of AT2 (similar to25%). Up-regulation of Ang II-receptor number was associated with increased Ang II-receptor responsiveness, as evidenced by enhanced Ang II-stimulated inositol phosphate (IP) generation and incorporation of tritiated thymidine. Both (H-3)thymidine incorporation and IP generation were mediated by AT1-receptor activation. These data suggest that glomerular podocytes express a high-affinity binding site for Ang H with pharmacologic characteristics of both AT1 and AT2 receptors. This receptor site is up-regulated during podocyte differentiation, and receptor activation induces both IP generation and DNA synthesis by AT1-dependent mechanisms. We speculate that activation of podocyte Ang II receptors contributes to glomerular damage in disease states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据