4.3 Article

Hsp90 modulates CAG repeat instability in human cells

期刊

CELL STRESS & CHAPERONES
卷 15, 期 5, 页码 753-759

出版社

SPRINGER
DOI: 10.1007/s12192-010-0191-0

关键词

Hsp90 chaperone; Stress-induced mutation; Repeat instability; Homologous recombination

资金

  1. National Institutes of Health [EY07001, NS064762, GM38219]
  2. National Institute of Diabetes and Digestive and Kidney Diseases [DK007696]

向作者/读者索取更多资源

The Hsp90 molecular chaperone has been implicated as a contributor to evolution in several organisms by revealing cryptic variation that can yield dramatic phenotypes when the chaperone is diverted from its normal functions by environmental stress. In addition, as a cancer drug target, Hsp90 inhibition has been documented to sensitize cells to DNA-damaging agents, suggesting a function for Hsp90 in DNA repair. Here we explore the potential role of Hsp90 in modulating the stability of nucleotide repeats, which in a number of species, including humans, exert subtle and quantitative consequences for protein function, morphological and behavioral traits, and disease. We report that impairment of Hsp90 in human cells induces contractions of CAG repeat tracks by tenfold. Inhibition of the recombinase Rad51, a downstream target of Hsp90, induces a comparable increase in repeat instability, suggesting that Hsp90-enabled homologous recombination normally functions to stabilize CAG repeat tracts. By contrast, Hsp90 inhibition does not increase the rate of gene-inactivating point mutations. The capacity of Hsp90 to modulate repeat-tract lengths suggests that the chaperone, in addition to exposing cryptic variation, might facilitate the expression of new phenotypes through induction of novel genetic variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据