4.3 Article

The ambiguous role of the Na+-H+ exchanger isoform 1 (NHE1) in leptin-induced oxidative stress in human monocytes

期刊

CELL STRESS & CHAPERONES
卷 14, 期 6, 页码 591-601

出版社

SPRINGER
DOI: 10.1007/s12192-009-0110-4

关键词

Atherosclerosis; Leptin; Monocytes; NHE1; Oxidative stress; Signaling

资金

  1. European Union-European Social Fund
  2. Greek Ministry of Development-Greek Secretariat for Research and Technology

向作者/读者索取更多资源

Leptin, a 16-kDa cytokine produced mainly by the adipose tissue, is known to increase energy expenditure while at the same time lowering food intake by acting directly on the hypothalamus. ObRb, the leptin receptor mostly involved in intracellular signaling, is expressed in a wide range of tissues, thus allowing leptin to affect a much broader diversity of biological processes. High concentrations of leptin are encountered in patients with hyperleptinemia, a condition which very often accompanies obesity and which is a direct result of leptin resistance. In the present study, moderate and high concentrations of leptin (16 and 160 ng/ml) were mostly utilized in order to investigate the role of this cytokine in oxidative stress levels in human monocytes. Leptin was found to increase oxidative species production as measured with 2',7'-dichlorodihydrofluorescein diacetate (general marker of oxidative species, but not O (2) (-.) ) and dihydroethidium (marker of O (2) (-.) ). Surprisingly, it also augmented superoxide dismutase activity. Inhibition of the Na+-H+ exchanger isoform 1 (NHE1) also inhibited leptin-induced superoxide anion production but at the same time amplified leptin-induced production of other oxidative species. Signaling proteins such as phosphoinositide 3 kinase and conventional isoforms of protein kinase C (alpha-, beta(i)-, beta(ii)-), as well as NADPH oxidase, also participated in leptin signaling. Finally, leptin was found to increase glutathionylation levels of NHE1-bound heat shock protein 70 kDa (Hsp70) but not Hsp70 binding to NHE1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据