4.4 Article Proceedings Paper

Peroxynitrite-dependent modifications of tyrosine residues in hemoglobin. Formation of tyrosyl radical(s) and 3-nitrotyrosine

期刊

AMINO ACIDS
卷 25, 期 3-4, 页码 341-350

出版社

SPRINGER WIEN
DOI: 10.1007/s00726-003-0021-0

关键词

peroxynitrite; hemoglobin; tyrosine; ferryl heme; nitrotyrosine; oxidative modification

向作者/读者索取更多资源

Although peroxynitrite is believed to be one of the most efficient tyrosine-nitrating species of biological relevance so far identified, its nitration efficiency is nevertheless limited. In fact, the nitrating species formed through peroxynitrite decay are caged radicals ((OH)-O-./(NO2)-N-. or, in the presence of carbon dioxide, CO3.-/(NO2)-N-.) and the fraction that escapes from the solvent cage does not exceed 30 - 35%. One exception may be represented by metal-containing compounds that can enhance the formation of nitrotyrosine through a bimolecular reaction with peroxynitrite. Moreover, if the metal is also regenerated in the reaction, the compound is considered a nitration catalysts and the yield of tyrosine nitration enhanced several fold. Examples of peroxynitrite-dependent nitration catalysts are the Mn-superoxide dismutase, some cytochromes and several metalloporphyrins. On the contrary, it has been claimed that some hemoproteins are scavengers of peroxynitrite and play a role in limiting its biodamaging and bioregulatory activity. In this review, we discuss the case of hemoglobin, which is probably the major target of peroxynitrite in blood. This protein has been reported to protect intracellular and extracellular targets from peroxynitrite-mediated tyrosine nitration. This property is shared with myoglobin and cytochrome c. The possible mechanisms conferring to these proteins a peroxynitrite scavenging role are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据